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Abstract
Derivation of weakly nonideal hydrogen plasma EOS and detailed results on
partial contributions to plasma pressure for the Sun’s interior are presented.
The impetus for this work was the demand for high accuracy of the EOS
of the solar plasma in relation to the problems of modern helioseismology,
accuracy sufficient for reproducing the velocity of sound on the Sun from
optical measurements with errors not exceeding 10−4. In our computations
the relativistic corrections, degeneracy of electrons, radiation pressure in
plasma, the Coulomb interaction in the Debye–Hückel approximation together
with diffraction and exchange corrections and the contribution of bound and
scattering states are taken into account. The analysis of the electrical neutrality
condition in terms of activities and concentrations is presented. It is shown
how to modify the relation between activities and concentrations for removing
divergences of the Hartree contribution, representing the first order correction
due to the Coulomb interaction in plasma. For the conditions of the Sun
trajectory it is shown that the widely used practice of ignoring the neutrality
condition in terms of activities, taking the Hartree contribution into account,
gives a maximal error for plasma pressure of the order of 10−5.

PACS numbers: 51.30.+i, 52.25.Kn, 52.27.Gr

1. Introduction

Helioseismology opens a unique possibility of checking within an accuracy of better than 10−4

the equation of state (EOS) of weakly nonideal plasmas due to the inversion of local sound
velocity from optical observations [3]. The comparison of different theoretical models with
experiment permits us to check the existing ways to account for bound and scattering states
contributions, which are presented in physical literature for the second virial coefficient (SVC)
[10, 15].

0305-4470/06/174431+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4431

http://dx.doi.org/10.1088/0305-4470/39/17/S18
mailto:A.Starostin@relcom.ru
http://stacks.iop.org/JPhysA/39/4431


4432 A N Starostin and V C Roerich

The contribution of bound states is described by the Planck–Larkin (P–L) partition
function [7, 14]. An expression different from the P–L equation for the bound states
contribution was published in [16]. This expression was later confirmed in [18, 19, 21].

In our work a weakly nonideal hydrogen plasma EOS is derived. We present detailed
results on partial contributions to plasma pressure for conditions close to the Sun’s interior [3].
The generalization of the partition function is also presented taking into account broadening
of the atomic states. Analysis of the electrical neutrality condition for the Sun’s interior is also
performed.

2. Thermodynamic perturbation theory

According to [18] we can calculate the plasma pressure P using the corrections to the pressure
P0 of an ideal gas [13] that consists of electrons and protons:

P = P0 + PH + Pexch + PD−H + δP, (1)

where we include the following corrections, discussed later in this section: PH is the Hartree
correction, Pexch is due to the electron–electron exchange interaction, PD−H is the plasma
Coulomb interaction correction in the Debye–Hückel approximation and the higher order
correction δP , which takes into account contribution from the ladder diagrams, considered in
sections 3 and 5.

We shall consider protons as non-degenerate particles, their ideal gas concentration,
known as activity ζp, is connected in a grand canonical ensemble with their chemical potential
µp and temperature T (β = T −1):

ζp = 2 λ̄−3
p eβµp , (2)

λ̄p =
√

2πh̄2

mpT
is the thermal de Broglie wavelength. Electrons may be degenerate (at the Sun’s

centre ne λ̄3
e ≈ 0.6, where λ̄e =

√
2πh̄2

meT
), so we shall express their activity ζe via ideal gas

concentration [13], taking into account relativistic correction up to the first order [18] according
to values of the Sun’s temperature. For electron gas pressure we also use an expression with
the first order relativistic correction [18].

For this approximation the electroneutrality condition is written in the general form for a
multicomponent plasma (where zk is the charge of particles of kind k):∑

k

zkζk = ζe. (3)

The Hartree correction has the following representation [7, 13, 20] for the Helmholtz
thermodynamic potential � = −PV (V is the system volume):

δ�H

V
= Ṽ (0) ·

(
ζe −

∑
k

zkζk

)2

= −PH(�). (4)

Here Ṽ (0) is the Fourier transform of the Coulomb potential at zero transferred momentum.
Using the regularization of the integral by means of e−�r , � → 0 being an infinitesimal
parameter, we shall obtain (r = (r1, r2, r3), |r| = r , dr = dr1 dr2 dr3)

Ṽ (q) = lim
�→0

∫
e2

r
eiqr−�rdr = 4πe2

q2 + �2
, Ṽ (0) = 4πe2�−2. (5)

It is important that only the neutrality condition in form (3) provides a finite value for the
Hartree correction (4). In the next Hartree–Fock approximation we obtain the well-known
convergent result [9, 11, 13] for the electron–electron exchange interaction (see below).
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Next order terms in the interaction potential, called ring diagrams [4], correspond to the
Debye–Hückel contribution (see, for example, [1, 5–7, 12, 14, 20])

δ�D−H

V
= −T

�3
D

12π
. (6)

Here �D is the inverse Debye radius [1] (the sum over m includes ions and electrons):

�2
D = 4πe2

∑
m

z2
m

(
∂nm

∂µm

)
T

. (7)

For the non-degenerate case we can obtain in the first approximation over the λ̄� parameter
[6] the so-called diffraction correction to the Debye–Hückel term:

δ�diff

V
= π

8
T

(
e2

T

)2
 λ̄eeζ

2
e + 2ζe

∑
k

ζkz
2
k λ̄ek +

∑
kj

ζkζj z
2
kz

2
j λ̄kj

 . (8)

Here we use λ̄kj =
√

2πh̄2

µkj T
, µkj = mkmj

mk+mj
is the reduced mass.

We must recall that the physical concentrations are usually connected with chemical
potentials by relation [13]

nm = −
(

∂(�/V )

∂µm

)
T

. (9)

For physical concentrations the standard electrical neutrality condition exists:

ne =
∑

k

zknk. (10)

To adjust conditions (3) and (10) we shall use the following method. We determine the
physical concentrations from condition (9), taking into account the bounds, following from
(3). Let us find the value of ne from (10), and ζe from (3).

ne +
∑

k

nk =
∑

k

(zk + 1)nk = −β
∑

k

(
∂(�/V )

∂ζk

)
T

ζk. (11)

In expression (11) all derivations and summations are performed over ionic activities only and
ζe in potential � is expressed using (3).

The Debye–Hückel model must be improved with SVC corrections (order of 	2
D and

higher, where 	D = �De2/T is the nonideality parameter). Here we neglect such corrections
just to illustrate the difference between definitions (9) and (11). Within the framework of the
model, defined by equation � = �0 + δ�D−H, from condition (11) it follows that

ζk = nk

1 + 	D
2 zk

, ζe =
∑

k

zknk

1 + 	D
2 zk

(12)

and, obviously, (3) is valid. In contrast, in the standard theory, if the values of activities are
used in (7) instead of concentrations nk , from (9) we obtain

nk = ζk

(
1 +

	D

2
z2
k

)
, ne = ζe

(
1 +

	D

2

)
. (13)

Note the difference in the power of zk in (12) and (13). For zk �= 1 from (13), taking account
of ne = ∑

k zknk , we obtain violation of (3):

ζe = ne

1 + 	D
2

=
∑

k zknk

1 + 	D
2

�=
∑

k

zkζk =
∑

k

zknk

1 + 	D
2 z2

k

. (14)
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3. Ladder approximation for SVC calculation

Let us consider the contribution δP in (1). From the Matsubara technique (see [18] and
references therein) for δ�/V = −δP we have

δ�L

V
= 2

β

∑
i,ω

∫ 1

0

dλ

2λ

∫
dp

(2π)3
Gi(h̄p, ω)�i(h̄p, ω). (15)

Here the subscript ‘L’ stands for ‘ladder’, integration over parameter λ corresponds to charge
integration e2 �→ e2λ. Summation is performed over particle kinds i and energies ω (or p4)—
for fermions ω = πT (2n + 1), h̄p is the particle momentum, Gi(h̄p, ω) is Green’s function of
a particle in the Matsubara technique. The self-energy operator �i(h̄p, ω) can be expressed
via two-particle vertex part 	ij , obtained in the ladder approximation [9]:

�i(p) = 2

β

∑
j,k4

∫
dk

(2π)3
Gj(k)	ij

(
mjp − mik

mi + mj

,
mjp − mik

mi + mj

; p + k

)
. (16)

For example, for electron–proton interaction mi = me, mj = mp, p = (h̄p, p4) ≡ (h̄p, ω) is
the 4-vector for electrons and k = (h̄k, k4) for protons, respectively. The quantity 	ij (q, q

′;P)

may be written in the following form:

	ep(q, q
′;P) = Ṽep(q − q′) + (2π)3

∑
n

�̃n(q)�̃∗
n(q′)

(
En − h̄2q2

2µ

)(
En − h̄2q ′2

2µ

)
iP4 − h̄2P 2

2M
− En + µe + µp

, (17)

where q, q′ are the relative motion momenta before and after scattering, P = p+ k = (h̄P , P4)

is the 4-vector for total momentum, µ = µep is the reduced mass. From (15)–(17) we derive
δ� in a form using the electrical neutrality condition in terms of activities (3):

δ�L

V
=

∑
i,j

ζiζj λ̄3
ij

∫ 1

0

dλ

2λ

∫
dq

(2π)3

∑
n

(
En − h̄2q2

2µ

)
|�̃n(q)|2( e−βEn − e−βεq ). (18)

In (18) for ‘e–p’ interaction it is necessary to sum over discrete spectrum (bound states) as well
as to integrate over scattering states, described by index k. For ‘e–e’ and ‘p–p’ interaction
only the last action is not unreasonable. Such an approach permits independent verification of
the expressions for SVC published in the literature [7, 12].

4. Contribution to the SVC from bound states

To get the contribution of bound states to the SVC as in [19] we use the exact Fock [8] result
for the wave functions of a non-relativistic hydrogen atom in the momentum representation

1

(2π)3

∑
l,m

|�̃n,l,m(q)|2 = 8

π2a5
0n

3
(
q2 + p2

n

)4 . (19)

Here pn = (a0n)−1, a0 = h̄2

µe2λ
is the Bohr ‘radius’ for current charge e2λ. Taking into account

the fact that En ≡ − h̄2p2
n

2µ
and using (19) the part of expression (18) corresponding to bound

states may be written in the form:

δ�BS
SRM

V
= −ζeζpT λ̄3

ep�
BS
SRM = −ζeζpT λ̄3

ep

∞∑
n=1

n2 eχnF (χn). (20)
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Here χn = βRy/n2 and

F(χ) = 1 − e−χ

(
4 − 6√

π
χ1/2 +

4√
π

χ3/2

)
+

	
(

1
2 , χ

)
√

π
(3 − 4χ + 4χ2). (21)

As was shown in [19], asymptotically for n 
 1 this expression is four times greater than the
similar expression in the Planck–Larkin partition function:

FP−L(χ) = 1 − e−χ − χ e−χ , �BS
P−L =

∞∑
k=2

ζ(2k − 2)α2k

	(k + 1)
, (22)

where ζ(k) is the Riemann ζ -function. The Planck–Larkin expression contains some
contribution from scattering states, while (20)–(21) really represent the bound states
contribution only.

The bound states contribution may be written as

δ�BSV −1 = −ζeζpT λ̄3
ep�

BS. (23)

Note that expressions like (18) are obtained using the Keldysh technique [18]:

δP =
∑

a

(2Sa + 1)

∫ 1

0

dλ

2λ

∫
dp

(2π)3

∫
dω dω′

(2π)2

�>
a (h̄p, ω) G<

a (h̄p, ω′)
ω − ω′ (1 − e−β(ω−ω′)).

(24)

For the general form of the bound states contribution (23) from (24) using the broadening of
Green’s functions in the media we can obtain

�BS = β

∫ 1

0

dλ

λ

∫
dq

(2π)3

∫
dω

∞∑
n=1

(En − εq)
2|�̃n(q)|2 e−βω − e−βεq

εq − ω
an(ω − En), (25)

where q is the wave-vector of relative motion of the particles, q = |q|, an(ω) is the profile of
the atomic state n, broadened by ions and electrons [17]. If we neglect the broadening effects
and use the δ-function instead of the profile an(ω) in (25), we obtain (20)–(21).

5. Contribution to the SVC from scattering states

To calculate the contribution of the continual spectrum states to expressions like (18) one
needs to evaluate Fourier components of the wave functions that describe mutual scattering
of charged particles. It is convenient to use the system of Coulomb wave functions as a sum
over orbital moments [2]. In the momentum representation we have

�̃k(q) = (2π)−3/2 exp(πξ̃/2)	(1 − iξ̃ )J�. (26)

J� =
(

2π(1 − iξ̃ )�(
(q−k)2

2 + �2

2

)2 +
2πξ̃(k + i�)(

(q−k)2

2 + �2

2

)(
q2−k2+�2

2 − ik�
)
)

× exp

(
iξ̃ ln

(q − k)2 + �2

q2 − k2 + �2 − 2ik�

)
. (27)

Here ξ̃ = (a0k)−1 = µe2λ

h̄2k
. The first term in (27) is similar to the regularized 3D δ-function

with the use of parameter �, � → 0 (compare with (5)). Similar expressions can also be
obtained for ‘e–e’ interaction by changing mp → me.
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Taking into account subtraction in the factor ( e−βEk − e−βεq ) in (18), for example, for
‘e–p’ interaction we can transform expression (18) for the continual spectrum of scattering
states (SS) to

δ�SS
ep

V
= − λ̄ep

π
ζeζpT

(
e2

T

)2 ∫ 1

0
λ dλ

∫ ∞

0

∫ ∞

0
dx dy

πξ̃ep

sh πξ̃ep
exp(πξ̃ep)

e−y − e−x

x − y

×
(

1

(
√

x − √
y)2 + η̃2

ep

− 1

(
√

x +
√

y)2 + η̃2
ep

)
× exp

[−2ξ̃ep Im ln
(
x − y + η̃2

ep + i2
√

yη̃2
e p

)]
, (28)

where ξ̃ep = λαep√
y

, αep = √
Ry/T , η̃2

ep = h̄2�2

8µT
.

3D numerical integration provides the following asymptotic as � → 0 (a = e, p)

δ�SS
aa

V
− δ�(2)

aa

V
→ −ζ 2

a

{
e6

T 2

[
π

3
ln

(
� λ̄aa

2
√

π

)
− π

6
(1 − C)

]
+

λ̄3
aaT

2
�Q

(
−αa

2

)}
, (29)

where δ�(2)
aa is a part of a ladder with two steps, already included in the Debye–Hückel

approximation, αa =
√

mae
4

h̄2T
:

δ�SS
ep

V
− δ�(2)

ep

V
→ 2ζeζp

{
e6

T 2

[
π

3
ln

(
� λ̄ep

2
√

π

)
− π

6
(1 − C)

]
+

λ̄3
epT

2

[
�BS

SRM − �Q(αep)

]}
,

�Q(α) = 1

2

∞∑
n=4

ζ(n − 2)

	
(

n
2 + 1

)αn = −
(

ln |2α| +
3C

2
− 4

3

)
2α3

3
√

π
+ o(|α|3) as α → −∞.

(30)

In [7] the second item inside brackets in (30) contains an excess term with ln 3 in parentheses
(−C − 2 ln 3 + 1) as a mistake.

Summation of expressions like (30) for ‘p–p’, ‘e–e’ and ‘e–p’ interactions taking into
account that ζe = ζp will result in an expression that is independent of � for a classical part of
SVC:

δ�cl

V
= ζ 2

e T

(
e2

T

)3

· π

6
ln

mp

4me
. (31)

For exchange contribution δ�exch
ee we obtain a convergent expression

δ�exch
ee

V
= 1

8
√

π
ζ 2

e λ̄3
eeT E(αee). (32)

For E(αee) one can get an explicit expression (αee = −αe/2)

E(α) = α +
√

π ln 2 · α2 +
π2

9
α3 +

∞∑
n=4

√
π(1 − 22−n)

	
(

n
2 + 1

) ζ(n − 1)αn. (33)

Expression (33) is just the same as in [7] for exchange contribution and is confirmed by
numerical integration.

6. Weakly nonideal hydrogen plasmas EOS along the Sun’s trajectory

Consider the total contribution of ideal gas pressure and expressions (6), (8), (23), (29),
(30), (31), (32) to describe the EOS of weakly nonideal hydrogen plasmas in application to
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Figure 1. Absolute values of specific partial contributions (δP/Ptot) to total pressure as
functions of temperature 1—P0p; 2—P0e; 3—PD−H; 4—δ�diff/V ; 5—δ�cl/V ; 6— −δ�BS

SRM/V ;
7—δ�

q
ep/V ; 8— −δ�

q
pp/V ; 9— −δ�

q
ee/V ; 10— −δ�exch

ee /V ; 11—PR.

Figure 2. Electroneutrality analysis for the Sun’s interior, the functions of temperature:
1 (left axis)—deviation from neutrality in terms of activity |ζe/ζp − 1| using standard definition

in concentrations defined as nk = − ∂(�/V )
∂µk

; 2 (right axis)—total estimation of Hartree term
PH(�D)/Ptot of contribution due to deviation from condition (3).

helioseismology problems. When considering the plasma EOS (value of pressure P(ρ, T ) and
other thermodynamic functions) the contribution of equilibrium thermal radiation in plasma
should be added [18].

We calculated a weakly nonideal hydrogen plasma EOS that is a function of total pressure
P(T ) along the S-model of the Sun’s interior distribution [3].

Figure 1 shows the temperature dependence of partial contributions to total pressure
δP/Ptot. It is evident that many corrections to the SVC are significant, if high accuracy of the
inversion in helioseismology problems is taken into account.

Figure 2 presents the results of a electroneutrality analysis for the Sun’s interior. The
difference between ζe and ζp, which is shown in figure 2, appears if we neglect the
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electroneutrality condition in terms of activities and find ζm from the ‘standard’ definition
of concentration (9). In such an incorrect calculation of activities we used the EOS of weakly
nonideal hydrogen plasmas with non-zero Hartree correction (4) PH(�D).

7. Conclusion

The new results presented in this paper may be underlined as follows:

• new definition of electroneutrality condition in terms of activities and its conjugation with
the same condition in terms of concentrations,

• new correct expression for bound states and scattering states contribution, different from
those well known from the textbooks [7, 12],

• numerical estimations using corrected EOS for different contributions to the pressure
along the Sun’s trajectory,

• estimation of the influence of the new electroneutrality condition for the Sun’s interior.

Successive account of the electroneutrality condition in terms of activities equality
eliminates divergence in the Hartree term, in logarithmic contributions, proportional to e6,
and also in the contribution of bound states and scattering states. Fortunately, the account of
neutrality in the traditional form (without requirement of equal activities) leads to a relatively
small error from the Hartree term contribution (see figure 2)

PH(�D) ∼ 10−5Ptot.

In our opinion the account of broadening effects (see (25) and [19]) is more promising for
spectral lines description as well as for weakly nonideal dense plasma thermodynamics. In
principle, this approach joins problems of radiational gasdynamics and collisional–radiative
kinetics, where ‘atoms’ are represented in a different way for calculation of pressure and
radiation [19].
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